Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Atmospheric Chemistry and Physics ; 23(7):4271-4281, 2023.
Article in English | ProQuest Central | ID: covidwho-2306379

ABSTRACT

Air quality network data in China and South Korea show very high year-round mass concentrations of coarse particulate matter (PM), as inferred by the difference between PM10 and PM2.5. Coarse PM concentrations in 2015 averaged 52 µg m-3 in the North China Plain (NCP) and 23 µg m-3 in the Seoul Metropolitan Area (SMA), contributing nearly half of PM10. Strong daily correlations between coarse PM and carbon monoxide imply a dominant source from anthropogenic fugitive dust. Coarse PM concentrations in the NCP and the SMA decreased by 21 % from 2015 to 2019 and further dropped abruptly in 2020 due to COVID-19 reductions in construction and vehicle traffic. Anthropogenic coarse PM is generally not included in air quality models but scavenges nitric acid to suppress the formation of fine particulate nitrate, a major contributor to PM2.5 pollution. GEOS-Chem model simulation of surface and aircraft observations from the Korea–United States Air Quality (KORUS-AQ) campaign over the SMA in May–June 2016 shows that consideration of anthropogenic coarse PM largely resolves the previous model overestimate of fine particulate nitrate. The effect is smaller in the NCP which has a larger excess of ammonia. Model sensitivity simulations for 2015–2019 show that decreasing anthropogenic coarse PM directly increases PM2.5 nitrate in summer, offsetting 80 % the effect of nitrogen oxide and ammonia emission controls, while in winter the presence of coarse PM increases the sensitivity of PM2.5 nitrate to ammonia and sulfur dioxide emissions. Decreasing coarse PM helps to explain the lack of decrease in wintertime PM2.5 nitrate observed in the NCP and the SMA over the 2015–2021 period despite decreases in nitrogen oxide and ammonia emissions. Continuing decrease of fugitive dust pollution means that more stringent nitrogen oxide and ammonia emission controls will be required to successfully decrease PM2.5 nitrate.

2.
Atmosphere ; 14(4):612, 2023.
Article in English | ProQuest Central | ID: covidwho-2305477

ABSTRACT

Six phthalates: dimethyl phthalate (DMP), diethyl phthalate (DEP), di(n-butyl) phthalate (DnBP), butyl benzyl phthalate (BBzP), di(2-ethylhexyl) phthalate (DEHP), and di(n-octyl) phthalate (DOP) in settled dust on different indoor surfaces were measured in 30 university dormitories. A Monte Carlo simulation was used to estimate college students' exposure via inhalation, non-dietary ingestion, and dermal absorption based on measured concentrations. The detection frequencies for targeted phthalates were more than 80% except for DEP (roughly 70%). DEHP was the most prevalent compound in the dust samples, followed by DnBP, DOP, and BBzP. Statistical analysis suggested that phthalate levels were higher in bedside dust than that collected from table surfaces, indicating a nonuniform distribution of dust-phase phthalates in the sleep environment. The simulation showed that the median DMP daily intake was 0.81 μg/kg/day, which was the greatest of the targeted phthalates. For the total exposures to all phthalates, the mean contribution of exposures during the daytime and sleeping time was 54% and 46%, respectively.

3.
Atmospheric Chemistry and Physics ; 22(18):12153-12166, 2022.
Article in English | ProQuest Central | ID: covidwho-2040263

ABSTRACT

A knowledge gap exists concerning how chemical composition and sources respond to implemented policy control measures for aerosols, particularly in a semi-arid region. To address this, a single year's offline measurement was conducted in Hohhot, a semi-arid city in northern China, to reveal the driving factors of severe air pollution in a semi-arid region and assess the impact of the COVID-19 lockdown measures on chemical characteristics and sources of PM2.5. Organic matter, mineral dust, sulfate and nitrate accounted for 31.5 %, 14.2 %, 13.4 % and 12.3 % of the total PM2.5 mass, respectively. Coal combustion, vehicular emission, crustal source and secondary inorganic aerosols were the main sources of PM2.5 in Hohhot, at 38.3 %, 35.0 %, 13.5 %, and 11.4 %, respectively. Due to the coupling effect of emission reduction and improved atmospheric conditions, the concentration of secondary inorganic components, organic matter and elemental carbon declined substantially from the pre-lockdown (pre-LD) period to the lockdown (LD) and post-lockdown (post-LD) periods. The source contribution of secondary inorganic aerosols increased (from 21.1 % to 37.8 %), whereas the contribution of vehicular emission reduced (from 35.5 % to 4.4 %) due to lockdown measures. The rapid generation of secondary inorganic components caused by unfavorable meteorological conditions during lockdown led to serious pollution. This study elucidates the complex relationship between air quality and environmental policy.

4.
Journal of the Geological Society of India ; 98(7):971-975, 2022.
Article in English | ProQuest Central | ID: covidwho-1943294

ABSTRACT

In the present situation, Covid-19 is considered to be an unbeaten global pandemic. In every single fleeting moment, this SARS-CoV-2 (coronavirus-2) causes greater damage to our life including the physical world including drastic imbalance of the whole economic condition of any country. The lockdown governed in two consecutive years (2020 and 2021) in the world to control the spreading of the virus poses an undue threat to the industrial sectors including the coal mining sectors that determine the economic growth of the country. With these negative impacts of coronavirus-2 in our life, this present review aims to explore some of the positive influences of the Covid-19 pandemic through the restoration of the environmental system which are otherwise not possible. This quantitative review finds that spreading of the Covid-19 pandemic indirectly improves the air and water quality by reducing the number of vehicles, reduces the CO2, NOx, particulate matter, and other polluting gases emission from coal-based power plants through periodical lockdown in the country. Moreover, the lockdown implemented to minimise the spreading of the Covid-19 significantly reduces the coal dust production from the mining and transportation of coal that indirectly reduces environmental pollution.

5.
Atmospheric Chemistry and Physics ; 22(12):8369-8384, 2022.
Article in English | ProQuest Central | ID: covidwho-1911960

ABSTRACT

Due to the complexity of emission sources, a better understanding of aerosol optical properties is required to mitigate climate change in China. Here, an intensive real-time measurement campaign was conducted in an urban area of China before and during the COVID-19 lockdown in order to explore the impacts of anthropogenic activities on aerosol light extinction and the direct radiative effect (DRE). The mean light extinction coefficient (bext) decreased from 774.7 ± 298.1 Mm-1 during the normal period to 544.3 ± 179.4 Mm-1 during the lockdown period. A generalised additive model analysis indicated that the large decline in bext (29.7 %) was due to sharp reductions in anthropogenic emissions. Chemical calculation of bext based on a ridge regression analysis showed that organic aerosol (OA) was the largest contributor to bext in both periods (45.1 %–61.4 %), and the contributions of two oxygenated OAs to bext increased by 3.0 %–14.6 % during the lockdown. A hybrid environmental receptor model combined with chemical and optical variables identified six sources of bext. It was found thatbext from traffic-related emissions, coal combustion, fugitive dust, the nitrate and secondary OA (SOA) source, and the sulfate and SOA source decreased by 21.4 %–97.9 % in the lockdown, whereas bext from biomass burning increased by 27.1 %, mainly driven by the undiminished need for residential cooking and heating. An atmospheric radiative transfer model was further used to illustrate that biomass burning, rather than traffic-related emissions, became the largest positive effect (10.0 ± 10.9 W m-2) on aerosol DRE in the atmosphere during the lockdown. Our study provides insights into aerosol bext and DRE from anthropogenic sources, and the results imply the importance of controlling biomass burning for tackling climate change in China in the future.

6.
Atmospheric Chemistry and Physics ; 22(6):4047-4073, 2022.
Article in English | ProQuest Central | ID: covidwho-1766081

ABSTRACT

This paper concerns an in-depth analysis of an exceptional incursion of mineral dust over southern Europe in late March 2020 (27–30 March 2020). This event was associated with an anomalous circulation pattern leading to several days of PM10 (particulate matter with an aerodynamic diameter less than 10 µm) exceedances in connection with a dust source located in central Asia;this is a rare source of dust for Europe, which is more frequently affected by dust outbreaks from the Sahara Desert. The synoptic meteorological configuration was analyzed in detail, and the aerosol evolution during the transit of the dust plume over northern Italy was assessed at high time resolution by means of optical particle counting at three stations, namely Bologna, Trieste, and Mt. Cimone, allowing for the revelation of the transport timing among the three locations. Back-trajectory analyses supported by Copernicus Atmosphere Monitoring Service (CAMS) maps allowed for the location of the mineral dust source area in the Aralkum region. Therefore, the event was analyzed by observing the particle number size distribution with the support of chemical composition analysis. It is shown that the PM10 exceedance recorded is associated with a large fraction of coarse particles, which is in agreement with mineral dust properties. Both the in situ number size distribution and the vertical distribution of the dust plume were cross-checked using lidar ceilometer and aerosol optical depth (AOD) data from two nearby stations and showed that the dust plume (in contrast to those originating from the Sahara Desert) traveled close to the ground (up to a height of about 2 km). The limited mixing layer height caused by high concentrations of absorbing and scattering aerosols caused the mixing of mineral dust with other locally produced ambient aerosols, thereby potentially increasing its morbidity effects.

7.
Atmospheric Chemistry and Physics ; 22(6):3931-3944, 2022.
Article in English | ProQuest Central | ID: covidwho-1766080

ABSTRACT

Lidar observations were analysed to characterize atmospheric pollen at four EARLINET (European Aerosol Research Lidar Network) stations (Hohenpeißenberg, Germany;Kuopio, Finland;Leipzig, Germany;and Warsaw, Poland) during the ACTRIS (Aerosol, Clouds and Trace Gases Research Infrastructure) COVID-19 campaign in May 2020. The reanalysis (fully quality-assured) lidar data products, after the centralized and automatic data processing with the Single Calculus Chain (SCC), were used in this study, focusing on particle backscatter coefficients at 355 and 532 nm and particle linear depolarization ratios (PDRs) at 532 nm. A novel method for the characterization of the pure pollen depolarization ratio was presented, based on the non-linear least square regression fitting using lidar-derived backscatter-related Ångström exponents (BAEs) and PDRs. Under the assumption that the BAE between 355 and 532 nm should be zero (±0.5) for pure pollen, the pollen depolarization ratios were estimated: for Kuopio and Warsaw stations, the pollen depolarization ratios at 532 nm were of 0.24 (0.19–0.28) during the birch-dominant pollen periods, whereas for Hohenpeißenberg and Leipzig stations, the pollen depolarization ratios of 0.21 (0.15–0.27) and 0.20 (0.15–0.25) were observed for periods of mixture of birch and grass pollen. The method was also applied for the aerosol classification, using two case examples from the campaign periods;the different pollen types (or pollen mixtures) were identified at Warsaw station, and dust and pollen were classified at Hohenpeißenberg station.

8.
International Journal of Global Environmental Issues ; 20(2-4):241-251, 2021.
Article in English | ProQuest Central | ID: covidwho-1706111

ABSTRACT

Due to the novel coronavirus spread (COVID-19) globally, governments across the world recommended the mandatory use of facemasks. The facemask helps people prevent and control the spread of virus infection. In this paper, we propose a design and model of facemask to inactivate the virus particles present in our surroundings. The proposed facemask is able to purify the air when a person inhales and exhales. The proposed mask is cost-effective, reusable, washable, and possesses the ability to disinfect the surface of facemask. The mask has the capability to trap all dust particles and virus present in the air, drastically decreasing the chance of infection. The mask is well-designed on the concept of activated carbon and copper filter.

SELECTION OF CITATIONS
SEARCH DETAIL